
The methods of forensic anthropology are most effective when
applied to the complete skeleton of an individual. Age estimates
rely on combined data from different points in the skeleton,
such as the teeth and various long bone epiphyses, which must
be synthesized and interpreted as indicative of a specific age
range. Population affinity (e.g., race) is best determined through
reference to a complete cranium and mandible, but additional
support can be obtained through observation of the postcranial
skeleton. As part of their analysis, forensic anthropologists are
often confronted with the problem of commingled remains, where
the remains of multiple individuals are part of a single assem-
blage with no readily apparent indication as to which bone spec-
imens belong to which individual. This condition obstructs
the personal identification process by frustrating attempts to
synthesize data from multiple elements and, until resolved,
may preclude the release of remains to next of kin for final
disposition.

Nowhere has the problem of commingled human skeletal re-
mains been more aggressively addressed than at the U.S. Army
Central Identification Laboratories (CILs). The CILs have been
in charge with identifying the remains of the nation’s war dead
for extended periods of time following World War II, the Korean
War, and the Vietnam War. Naturally, these cases often included
commingled remains from aircraft crashes and mass graves.
Charles Snow, who worked at the CIL in Hawaii in 1947, pub-
lished a paper summarizing the work being done in the Pacific
CIL during his one-year tenure (1). Approximately 25% of
Snow’s paper was dedicated to the topic of sorting commingled
remains. Snow devised a logical series of steps for sorting
commingled remains that are as relevant today as they were
then, and these guidelines serve as the basic framework of the
methods we advocate. Some of the steps advocated by Snow use
the size and shape of bones as a basis for segregating them into
individuals.

The Method of Osteometric Sorting

For sorting commingled remains, Snow took advantage of the
fact that the human physique varies in predictable ways. Experi-
enced osteologists have long recognized that an individual with
long, slender femora should have long, slender humeri. Con-
versely, short and thick femora are found with short and thick
humeri. Bones can be correctly segregated using this principle so
long as the variation within the assemblage is marked and the num-
ber of commingled individuals is small. But how large must the
size variation be in order for it to be accurately recognized? How
much confidence can be placed in the results? To what extent is ac-
curacy idiosyncratic to the anthropologist? Should greater empha-
sis be placed on the size or the shape of the bones? Answers to these
questions are not readily forthcoming. What is needed is a method
that incorporates objective measurements and formal arguments.
Osteometric sorting has these qualities, and it is a powerful addi-
tion to the package of gross methods that are available to anthro-
pologists for sorting commingled remains.

Osteometric sorting uses measurements on bone specimens as
the basis for comparison. The measurement data from respective
case specimens are simultaneously compared with reference data
and with one another. Segregation decisions are made by explicitly
testing the null hypothesis that two specimens, given their size and
shape, could have belonged to a single individual. With its reliance
on bone measurements and statistical hypothesis testing, this ap-
proach virtually eliminates subjectivity. We recommend that os-
teometric sorting be used as one step in the process of sorting com-
mingled skeletal remains. Other methods, such as articulation of
adjacent bones and pair-matching, are often more effective when
they can be properly applied.

Previous Studies

Osteometric sorting has been attempted on a limited basis in pre-
vious studies (2–5). Buikstra et al. (2) reported the results of an os-
teometric sorting study designed to evaluate the likelihood that two
corresponding cervical vertebrae originated in the same individual.
The aim was to be able to formally test the null hypothesis of “con-
gruence” in the size and/or shape of the corresponding vertebrae. A
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series of measurements were taken on cervical vertebrae in Terry
Collection skeletons at the Smithsonian Institution. The variable
used in the statistical test was derived by subtracting a given mea-
surement value of a vertebra from the equivalent measurement
value of the corresponding vertebra in the caudal direction. This
value was then formally compared with the Terry sample mean for
the variable by way of a t-test. While Buikstra et al.’s results from
osteometric sorting did not reverse the conclusions drawn from
more traditional analysis (i.e., evaluating the fit of articulating ele-
ments), they did provide a more objective means of demonstrating
how poor the congruence was in one case, and that the vertebrae
sizes were well within the expected size range in a second case.
Thus, they were able to support expert opinions with hard data and
formal test results.

London and colleagues (3,4) have experimented with osteomet-
ric sorting, as reported in two presented papers. This research has
concentrated on associating the femoral head with the acetabulum.
The original study, involving sample data collected from 100 indi-
viduals from the Maxwell Museum, University of New Mexico,
found a significant correlation between the femur head diameter
and measurements of the acetabulum. While London and Curran
(3) indicate success in their osteometric sorting, no details were
available as to how the correlations were exploited in the sorting
protocol. Later, London and Hunt (4) revised the acetabulum mea-
surements to be applicable to the Smithsonian Institution’s Terry
Collection with its many individuals exhibiting arthritic lipping on
the acetabulum. In an experimental application to commingled re-
mains of the Huntington Collection, they found that the use of os-
teometric sorting in tandem with visual sorting improved their abil-
ity to resolve the commingling.

Rösing and Pischtschan (5) reported an experiment with osteo-
metric sorting applied to archaeological samples. The sample data
included 16 measurements taken on 32 individuals from archaeo-
logical contexts (sample individuals were not commingled). The
measurements included long bone lengths and circumferences
along with two skull measurements. Correlation coefficients were
calculated. A 98% confidence ellipse was calculated for a bivariate
model comparing the radius and ulna since it showed the highest
correlation (r � 0.963). Five pairs of specimens were plotted
against the model and its associated ellipse along with all possible
pairings of specimens including mismatched pairs. The assessment
of success in the method was made by the closeness of a true match
to the regression model line, as opposed to mismatches, which ac-
cording to their method should be relatively further from the cen-
troid. Because they found that mismatched specimens were often
closer to the model line than true matches, they concluded that
mathematical models do not offer much hope for sorting commin-
gled remains. Part of the blame for the lack of success was at-
tributed to the reliance on measurement data. Measurements, they
argue, provide a “harsh reduction of the available information” in-
herent in bone specimens. Rösing and Pischtschan conclude that
re-individualization of commingled bones is best done by subjec-
tive assessment.

The study by Rösing and Pischtschan should be examined in
more detail since their conclusions suggest osteometric sorting of-
fers little to the process of sorting commingled remains. Their ex-
periment can be criticized on several grounds. First, the sample size
in their study (N � 32) was too small to support more than a pilot
study. The most serious problems with the Rösing and Pischtschan
study, however, relate to their statistical procedures. Recall that
Buikstra et al. (2) advocated the use of a formal statistical hypoth-
esis test to determine the strength of congruence between two

specimens proposed as a match. Rösing and Pischtschan used a
stricter criterion of the closeness of the plotted measurements to the
regression model line. By this method, the specimen closest to the
“average” (i.e., the regression model line), using the size of the sec-
ond specimen as the independent variable value, is the match de-
spite the possibility that other close matches are present as well.
This criterion is unrealistic in that it ignores the reality of human
variation. Variation in bone size within the skeleton is broad
enough that most true matches will not lie on the regression model
line; thus, variation must be anticipated in any new method reliant
upon bone measurements.

The authors included a confidence ellipse around the bivariate
centroid in their example, but did not explain its use, if any, nor jus-
tify their selection of 98% as the confidence level. Confidence el-
lipses are typically used to represent the bivariate sampling distri-
butions of sample centroids and to facilitate comparison of the
bivariate centroids of two or more samples (6). A superior ap-
proach to comparing bone specimens (as opposed to samples) is to
construct a prediction interval (7,8) on the regression model and to
test the hypothesis that one specimen matches a second specimen
given their measurement values. The differences in the approaches
go well beyond splitting statistical hairs. The prediction interval is
the sampling distribution of a single predicted value (i.e., the pre-
dicted value of a bone measurement, given the size of the bone it is
compared with) when the true population model parameters must
be estimated using a sample of reference data (8). Prediction inter-
vals differ from confidence ellipses in their geometry: a prediction
interval is a hyperbola whose upper and lower boundaries are clos-
est near the sample centroid, while the boundaries of the confi-
dence ellipse bulge in the vicinity of the centroid. The confidence
ellipse has boundaries that intersect the regression model line, so
that large bones and small bones will be excluded from the distri-
bution. These differences relate to the fact that the confidence el-
lipse represents the sampling distribution of the centroid, not single
predicted values. The prediction interval becomes increasingly
broad at growing distances from the centroid along the regression
model line, which reflects the fact that we have less confidence in
the accuracy of the regression model as we move away from the
centroid (due to sampling error at the upper and lower ends of the
data distribution). An important ramification of these differences is
that osteometric sorting using the prediction interval will have its
greatest discriminatory power when case specimen measurement
values are relatively close to the sample centroid.

The poor results of their study led Rösing and Pischtschan to
conclude that anthropologists should rely upon subjective judg-
ment to sort commingled skeletal remains. They note (p. 40) that
morphological sorting operates on the basis of “broad personal ex-
perience” and is “sufficiently successful” so long as “the number of
commingled skeletons is not too high.” No evidence is provided to
support their claim of success in this subjective approach. Nor do
they indicate how many remains are too many. While pair-match-
ing of the same element has been formally evaluated (9), it is un-
likely that any studies have been conducted to evaluate error rates
in morphological sorting—as noted above, these approaches do not
lend themselves to the determination of error rates.

The Reference Sample

The method of osteometric sorting requires comparison with a
large reference sample with numerous measurements that represent
aspects of both size and shape of skeletal elements. We view the
development of reference data as an on-going project, whereby the



sample size and the composition of the reference sample is im-
proved on a continual basis. This approach follows the philosophy
of the data banking concept (10). The reference sample used in this
study consists of data collected from the Central Identification Lab-
oratory, Hawaii (CILHI) cases, various anatomical collections, and
the Forensic Data Bank (FDB) (see 10).

The list of measurements taken in support of this study originally
included over 140 different observations. The core measurements
are derived from the Forensic Data Bank list (11), which includes
standard osteometric measurements with published definitions fa-
miliar to most forensic anthropologists. It is the unfortunate reality
that most standard measurements were defined such that they must
be taken on complete bones, as with the maximum lengths and with
mid-shaft diameters. For this reason, the standard set was supple-
mented by new measurements, largely defined by the authors, de-
signed to be applicable to fragmented bone specimens. Appendix 1
provides an abridged list of only the measurements used in this pa-
per, along with their formal measurement definitions. The mea-
surement numbers are consistent with the FDB numbers with the
exception of the new measurements. New measurements are given
a number and letter combination so that measurements on the same
element will cluster together in the list, while not disrupting the
original FDB measurement numbering scheme.

The measurements were taken on American Whites, American
Blacks, and Asians. Both sexes are represented. The majority of the
White males with the complete set of measurements (FDB and new
measurements developed for fragmentary remains) were from
CILHI cases. These individuals were military personnel identified
by the CILHI over the past few years. CILHI cases are an ideal
source of data (provided preservation is good) since these were
healthy individuals of known race, age, and stature at their time of
death. The statures are measured statures. Other data were obtained
through visits to the Terry Collection of the Smithsonian Institu-
tion, the Hamann-Todd Collection of the Cleveland Museum of
Natural History, and the Bass Collection of the University of Ten-
nessee. Finally, postcranial measurement data from the FDB were
made available to the authors by Dr. Richard Jantz. The reference
sample composition is summarized in Table 1.

We have made the attempt to develop a high quality reference
data sample that is generally applicable in forensic anthropology
casework in the United States and beyond. Quality control mea-
sures were taken during the data gathering process. For example,

CILHI cases were measured only when preservation was good
enough that the measurement values would not be altered by tapho-
nomic factors. We avoided individuals in the anatomical collec-
tions who died after prolonged periods of illness since there was
potential for extreme atrophy in those skeletons. In all cases, mea-
surements of traumatized or pathological areas of bones were not
taken. The FDB data were carefully scanned for outliers. Outliers
that could be attributed to data entry or measurement errors were
corrected when possible (see 12) and deleted when clearly in error
and uncorrectable. Interobserver error in the data collected by the
authors was controlled by periodically repeating measurements to
ensure that both osteologists were getting the same values for the
given specimens. While there was no means of directly addressing
interobserver variation in the FDB, the results of a study by Adams
and Byrd (12) suggest that it is minimal for most measurements.

Osteometric Sorting Procedures

The bases for osteometric sorting are the relationships that exist
among bone sizes as represented by measurements. Large humeri,
for example, are associated with large femora and the strength of
the association can be measured. Trotter and Gleser (13) reported
correlation coefficients for the numerous long bone measurements
incorporated into their classic paper on stature estimation. Trotter
and Gleser (13:486) found that strong correlations exist among the
long bone lengths, most ranging between 0.80 and 0.98. Their
results suggest that size relationships among long bones are strong
enough to support size-based sorting. Correlation coefficients
have been calculated for selected measurements. Our results, too
extensive to be reported here, are consistent with those of Trotter
and Gleser in that they show high correlations among the long bone
length measurements. The reference data include considerably
more measurements than used by Trotter and Gleser and permit the
examination of relationships of bone lengths with diameters, and
diameter measurements with one another. It is clear that some rela-
tionships are stronger than others, such that length measurements
show considerably stronger correlations than do breadth measure-
ments (including diameters).

The statistical approach to osteometric sorting advocated here is
to test the null hypothesis that two bone specimens are of sizes con-
sistent with having originated from the same individual. The bi-
variate statistical models, calculated from the reference sample
data, serve as the basis for testing the hypothesis. For example, a
measurement can be selected from each of two specimens to be
compared. An ordinary least squares regression model, with asso-
ciated prediction interval, is calculated with one of the measure-
ments as the independent variable and the other as the dependent
variable. We wish to point out that there are numerous valid statis-
tical methods other than regression that could be applied to this
problem. These include, but are not limited to, using simple bone
measurement ratios (13–15), reduced major axis regression
(14,16), principal components analysis (6), and canonical correla-
tion (6). Objections to the use of least squares regression models
can include the seemingly arbitrary selection of independent versus
dependent variables in the models, and the need for assumptions re-
garding the error variance in the independent variables (16).
Though we advocate the use of models set up in multiple directions
(i.e., humerus on femur or femur on humerus), it is important to
note that the direction is not arbitrary but determined by the ques-
tion asked, which is determined by the circumstances of the case.
This is analogous to regressing stature on bone lengths (7,14) be-
cause one wishes to estimate stature from a case specimen. We fol-
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TABLE 1—Reference sample broken down by collection, race, and sex.

Collection Sex Black White Asian Total

CILHI F 0 1 0 1
M 5 42 4 51

CMNH-HT F 2 2 0 4
M 7 7 0 14

SI-TERRY F 14 10 0 24
M 14 2 0 16

UT-BASS F 3 9 0 12
M 4 7 0 11

FDB F 12 46 0 58
M 17 108 0 125

Total 78 234 4 316

CILHI, US Army Central Identification Laboratory, Hawaii.
CMNH-HT, Cleveland Museum of Natural History Hamann-Todd

collection.
SI-TERRY, Smithsonian Institution Terry collection.
UT-BASS, University of Tennessee Bass collection.
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low Trotter and Gleser (13) in comparing bone sizes with the use
of ordinary least squares regression, and point out, following
Jungers (17), that when the correlations among the variables are
high and the goal of the analysis is prediction, least squares regres-
sion is an appropriate method.

The decision as to which of the two specimens is to be the in-
dependent variable is always determined by the circumstances of
the specific case. An example would be where one has begun
with a partial skeleton consisting of a lower body, and must de-
termine whether or not an isolated humerus (or multiple humeri)
could have originated from the same individual. Here, the size of
the femur is a logical independent variable that is used to predict
the size of a humerus originating from the same body. We typi-
cally start with lower bodies in our sorting regimen, following the
systematic steps advocated by Snow (1). The case specimen mea-
surement value (independent variable) is entered into the regres-
sion model formula to produce a predicted value for the other
bone measurement. If the actual measurement value of the second
bone specimen falls within the prediction interval surrounding the
predicted value, then the null hypothesis is accepted. Only where
the null hypothesis is rejected do we sort bones into separate in-
dividuals. The method supports a sound argument that, where the
null hypothesis is rejected, it is unlikely that the two specimens
originated from the same individual. However, the reverse is not
necessarily true. In most instances, failure to reject the null hy-
pothesis is not sufficient evidence to conclude that the elements
are from the same individual. This argument must be supported
by independent evidence.

For osteometric sorting, the hypothesis tests do not need to
be based upon a single bone measurement from each specimen.
Principal components analysis of the reference data consistently
shows that size accounts for the majority of variation in the data.
We have experimented with a variety of ways to combine multiple
measurements from a single element into a single variable, includ-
ing the use of allometric coefficients from principal components
analysis as measurement weights prior to the summation of the
measurement values. Improvement of the statistical model charac-
teristics was used as the criterion for evaluation of the respective
approaches. It was found that a simple summation of the available
measurements on a bone element provides an effective variable for
use in a bivariate model. Summation of multiple measurements
leads to significantly higher correlations between bone sizes, espe-
cially where two or more diameter measurements are combined
into a single variable (many of the length measurements already
show high correlations with little room for improvement). The lin-
ear combinations we have used as variables in our analyses,
whether using bone lengths or not, have shown correlation coeffi-
cients of 0.80 or higher (see test applications below). Aside from
the marked improvement in the statistical models, it appears that
the use of multiple measurements has the advantage of incorporat-
ing more information (such as pertaining to shape) into one model.
It is also possible to combine measurements from multiple ele-
ments into a single variable if warranted (i.e., in situations when the
elements are known to originate from the same individual based on
articulation or other means). Canonical correlation analysis (6) is a
more sophisticated way of combining multiple measurements into
a single variable. This procedure weights the measurement values
so that the overall correlation between two sets of measurements is
maximized, and arguably makes more use of shape characteristics
than the simple linear combination we advocate here. However, ap-
plications of canonical correlation to our data have revealed that
any improvement is negligible (e.g., there is not a substantial im-

provement in the use of shape) and the additional computational
complexity is not justified.

Data transformations can improve the characteristics of the regres-
sion models used in the hypothesis tests. A common transformation
is the logarithmic transformation of measurement values (16). Loga-
rithmic transformations were an essential step in the classic allomet-
ric studies (16,18,19) because many growth relationships among or-
gans of the body are non-linear. The allometric models become linear
following transformation and often show improved homoscedasticity
(see 16). Other transformations are possible as well. In this study we
experimented with numerous transformations and settled on the nat-
ural logarithm as a reasonable choice. We transform the summed
measurement values from an element into the natural logarithm of the
variable value. Note that some bias must be corrected when trans-
forming model estimates back to raw numbers (see 20).

The following procedures provide a basic summary of our
method. We wish to stress that the particulars of the case will
determine the form of the hypothesis to be tested, such that if one
is beginning with lower body portions and attempting to associate
(or segregate) an upper body bone to the individual, then the size of
the lower body portions (or a selected bone such as the femur)
should serve as the independent variable. Next, the appropriate
measurements are taken. The measurement values for each element
are summed. The summed total is then converted to a natural loga-
rithm for each element (the logarithmic value should be expressed
with a minimum of two decimal places). Next, the desired regres-
sion model is calculated from the reference data (numerous regres-
sion formulae are presented below), and the second element is re-
gressed on the first. The value obtained for the second case
specimen is compared to the desired prediction interval obtained
from the regression model. Giles and Klepinger (7) detail the pro-
cedure for calculating a prediction interval based on linear regres-
sion from summary statistics. We provide the necessary statistics
throughout this paper for the calculation of predication intervals by
the reader. If the value falls outside of the prediction interval, then
the null hypothesis is rejected and the specimens are sorted. Figure
1 shows a graphic example of the application of the method to
known individuals using a 90% prediction interval. In this exam-
ple, two humeri, known to originate from different individuals,
were compared with two femora, also known to originate from dif-
ferent individuals. Thus, beginning with two lower bodies repre-
sented by the femora, we simultaneously tested four hypotheses re-
garding the possible association of each humerus to the respective
femora. Presentation of the results as a plot (Fig. 1) provides sim-
ple interpretation: we must reject the null hypotheses for humerus

FIG. 1—Plot showing segregation based on osteometric sorting.



1 with femur 2 and for humerus 2 with femur 1. If these remains
were commingled, we would sort them, leaving humerus 1 with fe-
mur 1 and humerus 2 with femur 2. This evidence alone does not
prove the latter associations, but provides a sound, objective argu-
ment for the sorting. Applications of the method to cases of known
individuals follow.

Test Applications of Osteometric Sorting

The method of osteometric sorting has been applied to artificially
commingled sets of remains and actual case examples. Through
these tests it is possible to evaluate the overall effectiveness of the
approach and to verify that the error rates are at the expected levels
or lower. In all test applications, the data are from known individu-
als. Note that the same two specimens are never compared twice in
a test application. We utilize the 90% prediction interval in all of
the tests. In the following examples, the method is applied as an es-
sentially stand-alone procedure though we do not recommend its
normal use in this manner. As stated previously, osteometric sort-
ing is incorporated as one step among many in the process of sort-
ing commingled remains. Although numerous test cases were per-
formed using osteometric sorting, only two are presented in this
paper that are illustrative of the method. While not exhaustive, the
regression models presented in the following examples can be ap-
plied to cases so long as the same core measurements are used to
construct the variables.

Test Application 1

The first test application (Test 1) consists of partial remains of
six individuals as listed in Table 2. These data were taken from a
combination of four CILHI cases and two Terry Collection skele-
tons. Test 1 can be considered an ideal situation for osteometric
sorting in that there are a variety of body sizes in the group and it
is assumed that the represented bones are complete. Table 3 pro-
vides the variables as defined for the test and Table 4 contains the
regression model statistics used in the hypothesis tests. Calcula-
tions were performed using the SAS PROC REG routine (21).
Table 5 illustrates how the results are read and shows the hypothe-
sis test results by regression model for a set of comparisons in-
volving the radius and humerus.

These results allow us to quantify the performance of the
method. In total, there were 113 comparisons of case specimens
made. Of these, 58% (n � 65) led to rejection of the null hypothe-
ses in situations where the specimens originated from different in-
dividuals. Another 17% (n � 19) of the comparisons were from the
same individual and had the null hypotheses accepted. Type I
errors, where comparisons involving specimens from the same
individual had the null hypotheses rejected, occurred in 3% (n � 3)
of the comparisons. The remaining 22% (n � 26) of the compar-
isons involved specimens from different individuals, but the null
hypotheses were accepted. Regarding the last circumstance, we
would like to remind the reader that this method does not claim to
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TABLE 2—Test 1 sample and relevant skeletal elements.

Year of Stature
Individual Death Race Sex Age (cm) Elements

A 1934 Black F 32 156 Left ulna, right radius, left humerus
B 1925 Black F 24 171 Left humerus
C 1943 White M 20 178 Left humerus, right ulna, left femur, left tibia
D 1941 White M 17 177 Right humerus, left radius, left femur, right tibia
E 1994 Asian (Korean) F 40 157 Left humerus, right radius, left ulna, left femur, right tibia
F 1943 White M 22 182 Right ulna, right femur

TABLE 3—Size measurements used as part of Test 1 including their
means and standard deviations (STD). The variable is calculated as

LN(a�b�c . . .).

Variable Element Measurements Mean STD

TIB TIBIA 69, 71, 72, 73, 74A, 74B 6.32 0.09
FEM FEMUR 60, 62, 63, 64, 65, 68A, 68B 6.56 0.08
ULN* ULNA 49, 50, 51A, 51C 4.20 0.11
RAD RADIUS 45, 47A, 47B, 47C, 47D 5.77 0.09
HUM HUMERUS 40, 41, 41A, 42, 42A, 44B 6.31 0.08

* Includes no length measurement.

TABLE 4—Regression model statistics from Test 1.

Model N r Root MSE p

TIB�1.08(FEM) � 0.78 103 0.96 0.03 0.0001
TIB�0.65(ULN) � 3.60 95 0.80 0.06 0.0001
TIB�0.96(RAD) � 0.77 95 0.94 0.04 0.0001
TIB�1.09(HUM) � 0.54 94 0.93 0.04 0.0001

FEM�0.59(ULN) � 4.08 93 0.82 0.05 0.0001
FEM�0.84(RAD) � 1.74 94 0.91 0.04 0.0001
FEM�1.0(HUM) � 0.28 93 0.96 0.03 0.0001
ULN�1.03(RAD) � 1.78 97 0.84 0.07 0.0001
ULN�1.23(HUM) � 3.58 94 0.89 0.06 0.0001
RAD�1.04(HUM) � 0.81 94 0.93 0.04 0.0001

TABLE 5—Results from Test 1. The top row includes the specimen used as the independent variable, the predicted value (of dependent variable) from
the regression model, and the 90% PI. The left column includes the specimens that are compared with the top row and their respective values.

HUM A 5.62 HUM B 5.69 HUM C 5.79 HUM D 5.79 HUM E 5.63
Element 5.58–5.67 5.65–5.74 5.73–5.82 5.73–5.82 5.56–5.66

RAD A 5.68 Reject*! Accept Reject Reject Reject
RAD D 5.78 Reject Reject Accept Accept* Reject
RAD E 5.65 Accept Accept Reject Reject Accept*

* Specimens are from the same individual.
! Type I error committed.
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sort individuals of the same general size, nor is acceptance of the
null hypothesis sufficient proof of an association. An error rate of
3% (Type I errors) is encouraging as it is lower than the 10% ex-
pected when using a 90% prediction interval.

Test Application 2

The second test (Test 2) uses data obtained from a CILHI case
involving 8 individuals lost in an aircraft crash at the close of
World War II. The commingled remains were recovered by a
CILHI team in 1999. Table 6 summarizes the test assemblage.
There was extensive fragmentation of the remains due to the vio-
lence of the crash, therefore long bone lengths were not included in
the variables (Table 7). The regression models are reported in
Table 8. Note the relatively lower correlation coefficients for the
models incorporating fewer measurements and lacking bone
lengths. Of the 286 comparisons made, 30% (n � 87) led to suc-
cessful rejections of the null hypotheses. Null hypotheses were ac-
cepted where bones were from the same individual in 13% (n � 38)
of comparisons. Type I errors were committed in 2% (n � 5) of
comparisons and the remaining 55% were null hypotheses that
were accepted even though the specimens originated in different
individuals. Thus, despite the fragmented nature of the remains,
slightly under one-third of the specimens could be successfully
sorted using osteometrics alone. As a validation of the technique in
this case, the osteometric sorting was subsequently confirmed us-
ing mtDNA sequence data.

The error rates in these tests are surprisingly low given the use
of a 90% prediction interval. Additional test applications were per-
formed (not detailed here) and similar results were found. In total,
636 comparisons were made using known individuals and the
greatest error rate in any one test was 5%, and the overall error rate
was under 3%. Trotter and Gleser (13) encountered a similar phe-
nomenon when they tested their regression models against an inde-
pendent dataset. While they should have found approximately 66%
of the test subjects’ statures within one standard error, there were
79% in this range for the model utilizing the femur and tibia. On the
other hand, their humerus model performed worse than expected at
62% (13). It is likely that the error rates in this study are smaller
than expected due to noise in the reference data, possibly resulting
from slight interobserver variation, data entry errors, and other
problems common to pooled osteometric data (12). Note that all
measurements in the test applications were taken by the authors.

In most cases, the errors in the test applications appear to be the re-
sult of normal human variation. However, some concerns have
emerged from careful study of the specimens in error. Individual D
in Test 1 was a 17 year-old male whose long bone epiphyses had yet
to close at the time of death. The girth measurements for this indi-
vidual, particularly the humerus and femur head diameters, were un-
usually large relative to the lengths. Caution is in order when
applying the regression models, intended for the adult population, to

sub adults. Handedness was possibly a cause of error in some
instances where only girth measurements were used, but this does not
appear to be a significant factor overall in osteometric sorting. We
did not find that race or sex was a significant factor in causing error.

Discussion

Osteometric sorting shows great potential as an addition to ex-
isting procedures for sorting commingled remains. The advantages
include: 1) the method is inexpensive to apply, 2) it yields results
in a short period of time, 3) it has low error rates, 4) it has consid-
erable power when applied to individuals of varying size, and 5) the
statistics are simple and well-grounded in anthropology. There are
disadvantages to using the method as well. These include: 1) its
low power when applied to individuals of the same general size, 2)
its uselessness when the measurements cannot be taken, as due to
poor preservation, and 3) the effects of secular trends, handedness,
race, and sex have not been formally explored. As to the latter con-
cern, this study has found no evidence that these factors adversely
affect the method. The lack of a noticeable demographic or tempo-
ral effect is possibly due to the inclusion in the reference data sam-
ple individuals of multiple races, sexes, and decades of death. Re-
finement of the regression models in the future, tailored to specific
components of the population, could lead to greater power. In the

TABLE 8—Regression model statistics for Test 2.

Model N r Root MSE p

HUM�1.08(RAD) � 1.27 112 0.89 0.06 0.0001
HUM�1.04(ULN) � 1.47 99 0.89 0.06 0.0001
HUM�1.18(FEM) � 2.98 102 0.82 0.08 0.0001
HUM�1.02(TIB) � 1.97 110 0.86 0.07 0.0001
RAD�0.84(ULN) � 0.34 101 0.90 0.04 0.0001
RAD�0.96(FEM) � 0.96 101 0.84 0.06 0.0001
RAD�0.81(TIB) � 0.02 108 0.82 0.07 0.0001
ULN�1.02(FEM) � 0.87 99 0.81 0.07 0.0001
ULN�0.85(TIB) � 0.11 99 0.84 0.07 0.0001
FEM�0.74(TIB) � 1.45 105 0.89 0.05 0.0001

TABLE 6—The assemblage for Test 2.

Year of Stature
Individual Death Race Sex Age (cm) Elements

A 1945 White M adult 180 Left humerus, right radius, right ulna, left femur, left tibia
B 1945 White M adult 168 Left humerus, left radius, left ulna, left femur, left tibia
C 1945 White M adult 175 Right humerus, right radius, left ulna, left femur, right tibia
D 1945 White M adult 185 Right humerus, left femur, left tibia
E 1945 White M adult 184 Left humerus, left femur
F 1945 White M adult 170 Left humerus, left radius, left ulna, left femur
G 1945 White M adult 185 Right humerus, right radius, right femur, left tibia

TABLE 7—Size measurements used by element for Test 2 including their
means and standard deviations (STD). The variable is calculated as

LN(a�b�c . . .).

Variable Element Measurements Mean STD

HUM* HUMERUS 44B 2.88 0.13
RAD* RADIUS 47A, 47B, 47C 3.85 0.11
ULN* ULNA 49, 50, 51A, 51C 4.20 0.11
FEM* FEMUR 64, 65, 68A, 68B, 68E 4.97 0.10
TIB* TIBIA 72, 73, 74A, 74B 4.78 0.11

* Includes no length measurements. The fragmented nature of the re-
mains precluded the use of additional measurements.



interim we follow the recommendations of Feldesman and Foun-
tain (15) and developed generic models.

The test applications bring to light a number of important points
regarding osteometric sorting. Measurements must be taken prop-
erly, or the statistical models are invalid. Poor bone preservation
(i.e., cortical exfoliation) will preclude the attainment of accurate
data. Poorly preserved specimens should be excluded from metric
analysis. Measurements that are believed to be “abnormal,” such as
those of bone parts that are diseased, traumatized, or damaged post-
mortem, should be excluded.

Some statements can be made concerning the power of the
method and the rate of error. The actual error rates in case applica-
tions relate directly to the size of the prediction interval and appear
to be considerably smaller than is predicted by the models, though
we cannot guarantee error rates lower than 10% in future applica-
tions. We believe that some tightening of the interval is justifiable
and recommended. How tight is at the discretion of the analyst. The
90% PI appears to offer acceptable results given a desire to keep
error rates modest.

There is a relationship between the power of the method and the
variation in the overall sizes of the individuals represented in the
assemblage. The power index of the method is defined as:

A / (A � B)

where A is the number of comparisons involving bones from dif-
ferent individuals that lead to the successful rejection of the null
hypothesis and B is the number of comparisons involving bones
from different individuals where the null hypothesis must be ac-
cepted. The power index values vary from a low of 0 in the case of
no successful sorts and a high of 1.0 in the case where every bone
originating in a separate individual is successfully sorted. The
power index in the tests appears to relate strongly to the standard
deviation of the statures of the included individuals (see Fig. 2).

The power of the method is also related to the size of the predic-
tion interval, such that there is an increase in power as the predic-
tion interval is narrowed (see Fig. 2 above). Thus, one must balance
power against error rates when selecting the appropriate test crite-
ria (e.g., prediction interval).

Osteometric sorting is a relatively simple, effective method for
sorting commingled remains when it is used in conjunction with
other methods. We have found that the power of the method varies
with the size variation of the individuals being sorted, but the error
rates are consistently low. The method is most effective when ap-
plied to an assemblage in conjunction with other methods.
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FIG. 2—Power index showing the relationship of stature (standard de-
viation) and osteometric sorting.
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APPENDIX 1

Abridged list of post-cranial measurements used in study. Note that the numbering scheme is designed to correspond with the Forensic Data
Bank. 

Measurement Definition

Humerus
40. Max. length *
41. Epicondylar br. *
41A. Capitulum-trochlea br. The breadth of the capitulum and trochlea at the distal humerus. One end of the sliding calipers is

positioned parallel to the flat, spool-shaped surface of the trochlea, and the other end is moved
until it comes into contact with the capitulum.

42. Max. vertical diam., head *
42A. A-P br., head The maximum breadth of the humeral head taken in the anterior-posterior direction on the

articular surface. This measurement is taken perpendicular to the vertical diameter of the
humeral head.

44B. Min. diam. diaph. The minimum diameter of the humeral diaphysis taken in any direction perpendicular to the
shaft. This measurement should be taken on the oval part of the shaft, superior to the
flattening observed around the olecranon fossa and the lateral supercondylar ridge. Often it is
found near midshaft.

Radius
45. Max. length *
47A. Max. diam. radial tub. The maximum shaft diameter on the radial tuberosity. Position the calipers around the tuberosity

and rotate the bone until the maximum distance is obtained.
47B. Max. diam. diaph. distal to radial tub. The maximum shaft diameter distal to the radial tuberosity, positioned along the interosseous

crest. The bone should be rotated to find the maximum distance.
47C. Min. diam. diaph. distal to radial tub. The minimum shaft diameter anywhere distal to the radial tuberosity. The bone may be rotated to 

find the minimum distance.
47D. Max. diam. radial head Position the calipers around the radial head and rotate the bone until the maximum distance

is obtained.
Ulna
49. Dorso-volar diam. *
50. Transverse diam. *
51A. Min. diam. along interosseus crest Locate the minimum diameter of the diaphysis along the portion of the bone that includes the

interosseous crest. This measurement may not necessarily include the interosseous crest, but
should be taken on that part of the shaft that exhibits the crest.

51B. Min. diam. This measurement will be found near the distal epiphysis of the ulna. The bone should be rotated
in order to locate the minimum distance.

51C. Br. distal end of semi-lunar notch This is a measure of only the distal surface of the semilunar notch (the base). In order to obtain
the distance, one end of the calipers is positioned within the radial notch (approximate
midpoint), roughly parallel to the shaft. The other end of the calipers is applied to the medial
edge of the semilunar notch.

Femur
60. Max. length *
62. Epicondylar br. *
63. Max. diam. head *
64. A-P subtrochlear diam. *
65. Trans. subtrochlear diam. *
68A. Min. A-P diam. diaph. The minimum anterior-posterior diameter anywhere along the diaphysis. The linea aspera should

be utilized in order to orient the bone.
68B. Min. M-L diam. diaph. The minimum medial-lateral diameter anywhere along the diaphysis. The linea aspera should be

utilized in order to orient the bone.
68E. Max. diam. along linea aspera The maximum shaft diameter at any point along the linea aspera. As the bone should be rotated

to obtain the maximum distance, the measurement does not necessarily have to include the
linea aspera.

Tibia
69. Max. length *
71. Max. br. distal epiphysis *
72. Max. diam. nut. foramen *
73. Trans. diam. nut. foramen *
74A. Max. A-P diam. distal to popliteal line This measurement should be taken at the most distal point of the popliteal line. Note that the

correct location may be difficult to determine in very gracile individuals.
74B. Min. A-P diam. distal to popliteal line Locate the smallest anterior-posterior distance at any point on the tibial shaft.

* See (Ref. 11) for measurement description.


